AccueilSéminaire – Polynomial convergence rate to nonequilibrium steady-state
arton1375.jpg

Séminaire – Polynomial convergence rate to nonequilibrium steady-state

Mis à jour le : 05/07/2023

RechercheAgenda

A l’initiative du LMAH, Yao LI, University of Massachusetts Amherst, interviendra à l’université Le Havre Normandie pour un séminaire intitulé : ” Polynomial convergence rate to nonequilibrium steady-state”.

Résumé :

In this talk, I will present my recent result about the ergodic properties of nonequilibrium steady-state (NESS) for a stochastic energy exchange model. The energy exchange model is numerically reduced from a billiards-like deterministic particle system that models the microscopic heat conduction in a 1D chain. By using a technique called the induced chain method, I proved the existence, uniqueness, polynomial speed of convergence to the NESS, and polynomial speed of mixing for the stochastic energy exchange model. All of these are consistent with the numerical simulation results of the original deterministic billiards-like system.

Consultez les prochains événements à l’Université du Havre

Voir l'agenda

Les thématiques les plus populaires

Trajectoires Flash Focus Web TV